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Abstract

Boeing developed the Sneak Analysis technique for the manned space program in
1967 to find unintended modes of behavior that are not caused by component
failure.  Since that time, it has been applied to many types of systems, including
military, nuclear, automotive, mass transit, medical, and petrochemical.  Complete
systems including software, hydraulics, pneumatics, as well as electronic hardware,
can be analyzed for sneak conditions.  Circuitry can include combinations of analog
and digital technology.  Hybrids and application-specific integrated circuits (ASICs)
can be easily accommodated.  This paper explains the basic steps in the Sneak
Analysis technique, shows the differences between the Sneak Analysis approach and
other design analysis approaches, and provides several examples of sneak
conditions.  Relationships to other design analyses are discussed and advantages of
integrating Sneak Analysis with other design analyses are shown.  Conclusions
drawn from actual applications are presented.

Background

A sneak condition is a latent hardware, software, or integrated condition that may
cause an unwanted event to occur or may inhibit a desired event and is not caused
by component failure.

Symptoms of sneak conditions include system problems that are nonrepetitive
through tests or simulations, problems which conventional analyses cannot detect,
self-clearing problems, and higher failure rates than expected.

Three main factors cause sneak conditions.  These are called the spaghetti factor, the
tunnel vision factor, and the human factor.  The spaghetti factor, as its name
implies, deals with the entanglement of functional and electrical paths.  This occurs
both in the actual system design and in the data that represent the system.
Contributors to the spaghetti factor include the size and complexity of modern
systems and the layout of data.  The numerous inputs and outputs which are cross-
fed resemble a bowl of spaghetti.  Most of the data that represent a system are
organized for eventual manufacturing purposes.  These data with their many
crossed signal lines can hamper complete understanding of all the ways in which
the system may behave.

The tunnel vision factor deals with the splitting of the design and the system
documentation into pieces.  Most systems are split up among multiple contractors.
Each contractor may split the design responsibility into various departments.
Technology specialists, such as digital designers, analog designers, software
engineers, power supply designers, and ASIC designers add to the separation by



2

speaking different languages if they speak to each other at all.  This division causes
data segregation so complete, detailed understanding of even a single function is
like traveling a maze.  Further, changes to the original design complicate matters
and have proven to be a source for introducing sneak conditions into previously
clean functions.  Because limited budgets are always a problem, there is a desire not
to replicate what the designer of the interfacing equipment or software is doing;
therefore the "big picture" is sometimes not seen.

The third contributing factor to sneak conditions, the human factor, involves
people in the design and operation of a system.  During design, two people working
from a specification may interpret that specification in different ways.  This can
result in an incompatible design interface.  This often results in designs that work in
the lab and even most of the time in the field.  However, these differences cause
occasional and sometimes very serious results for which an explanation is often
difficult to find.  The human operator of a system can also be a contributor to the
occurrence of a sneak condition.  Operators may be faced with ambiguous
procedures, controls that do not do exactly what their labels indicate, and system
indicators that may not provide the actual system status. The operators may  have to
make split-second decisions based on these indicators in panic situations.  Such
situations are likely to prove an axiom of Murphy's law that states: "The likelihood
of a sneak condition occurring is proportional to its criticality to safety or the rank of
the visitor who is watching the demonstration."

Sneak Analysis is a method of finding latent undesirable conditions in systems
through the application of clues to topological network trees and forests.  The use of
network trees and forests reduces the spaghetti factor by separating functions onto
individual network trees and forests.  It reduces tunnel vision by combining
piecemeal functions from various data sources and physical locations onto a single
network tree and combining hardware and software subfunctions onto forests.  They
also allow evaluation of human factors.  Clue application is not limited to specified
procedures or mission profiles as are simulation and testing.  Therefore, simulation
and testing may not reveal sneak conditions.

History

Sneak Analysis originated from a NASA contract with Boeing to support the Apollo
program in 1967 after the Apollo 1 capsule fire.  NASA was having increased
concern with the ability of redundancy to handle unexplained, unintended, and
untimely events.  In addition, configuration control problems and differences
between design intent and as-built circuitry in systems of increasing complexity and
size were becoming more evident.  As part of this contract, a historical search of
sneak conditions which had actually occurred was begun.  Sneak events studied
included a missile accidentally launched from a  B-52 bomber while parked on the
ground, bombs accidentally released from a B-52, a nuclear bomb inadvertently
armed, a business jet which lost electrical power and drained its batteries while in
flight without any indication to the crew, and an electric utility lineman
electrocuted while working on a power line to which the  power  was "off."  All of
these events occurred without the failure of any components.  One case studied
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involved the mysterious activation of  fire alarms at a public school during recess
and lunch.  The school administration could not catch anyone pulling the alarms,
nor was there any evidence of alarms being pulled.  Investigation revealed that the
alarm system was designed to be triggered by activation of the automatic sprinkler
system through water pressure sensors.  However, flushing a particular number of
toilets would cause the same pressure drop at one of the sensors.  

Research has shown that sneak conditions are universal.  They can occur in all types
of systems and all types of circuitry and software.  The technique has been applied
successfully to a number of industrial facilities including hydrocarbon processing
plants and electronic governors on steam turbines for large, multinational
companies.  Other industrial applications of Sneak Analysis have included offshore
drilling platforms, power-generation plants, nuclear plants, medial devices, and
rapid transit systems.  While experience has shown that large, complex systems are
more likely to contain sneak conditions, significant results have also been obtained
on small systems.  For example, a recent Sneak Analysis of a "simple" battery
charger resulted in thirteen circuit design changes.  

Where cost is a limiting factor, Sneak Analysis of critical functions can be performed
with excellent results.  The tools that are used in Sneak Analysis to trace all paths
that affect a system output can be used to determine the critical paths that affect a
selected output.  However, application of the technique to a preselected small
component of a large system is usually not as beneficial.  This usually partitions the
system along the same boundaries that hide sneak conditions from the system
designers.  Also, preselected components may contain noncritical circuitry and
software, and excluded components may have critical sneak effects.

Advancements in Sneak Analysis

Sneak Analysis began with the analysis of power and control systems that mostly
consisted of relay logic in 1967.  Sneak Analysis of software began in 1972.
Techniques for digital circuits and analog circuits were developed in 1975 and 1976,
respectively.  Sneak Analysis of hybrid circuits was underway by 1978 and
programmable array logic was included in Sneak Analysis by 1987.  In 1989, Sneak
Analysis of systems containing ASICs began.  

The Sneak Analysis Process

The flow of the Sneak Analysis process is shown in Figure 1.  Data that are as close
as possible to "build from" information that represents the details of the system
hardware and software are reviewed and entered into the Sneak Analysis relational
database.  Whenever possible, computer-formatted data such as hardware netlists
and software program code furnished on magnetic media are directly loaded into
the system.  Computer processing combines these data with a library that provides
details of electrical component and software language operation.  The tracing of
electrical current flow, software program flow, and functional data flow paths by the
Sneak Analysis programs results in topological network trees and forests.  
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Fig. 1.    The Sneak Analysis Process Flow

The network trees show individual functions that may cross through multiple
physical boundaries such as circuit cards, boxes, or cables.  Figure 2 shows a sample
hardware network tree.  Note that this network tree integrates circuitry contained
on two circuit boards, a control panel, an ASIC, a motherboard, and several cables.  

Components and nodes are arranged so that current flow is from top to bottom and
signal flow is from left to right.  Adjacent nodes, even if located in separate
assemblies, are collapsed into a single node.  Also, the number of line crossings is
minimized and symmetry and duplication are maximized where applicable.  

The symbols used on network trees are dynamic.  If a network tree shows a
particular output of a device, then all inputs on that device that functionally affect
that output are shown.  Any input or output that has a direct electrical path through
that device is also shown on that network tree.  However, any other inputs or
outputs for that device are not shown on that network tree.  The size and
composition of the symbol are also adjusted to accommodate the number of inputs
and outputs shown.  These dynamic symbols are another way in which the spaghetti
factor is reduced.
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Fig. 2.    Network Tree Which Integrates Circuitry From Several Assemblies

Typically, each network tree has a single output.  All contributing inputs that may
affect that output are shown on that tree.  Electrical current flow and system data
flow are maintained through cross-references placed on the network trees.  Cross-
references are noted by X: followed by the cross-referenced network tree numbers.
These cross-references link network trees into network forests.

A forest is a graphical representation of those functionally related network trees that
define a system output in terms of its controlling inputs.  A forest is usually
developed for each physical output of a system such as valves, heaters, motors, and
indicators.  Each network tree that contains a system output becomes the starting
point for constructing a network forest.  A sample forest is shown in Figure 3.

Forests are drawn starting with the system output on the right side of the forest.
Each block in a forest represents a network tree.  Directional interconnecting lines
show the input/output relations between the network trees.  Each forest can contain
hardware and software trees.  

Forests provide a unique representation of a system function that is difficult to see
in design data.  Forests show how the network trees relate to one another and
provide a system-level view of a particular system output function.  A forest will
show all inputs that can affect the forest output.  
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Fig. 3.    A Forest Shows the Relationships Between Network Trees

Clue Application

A clue is a recognizable pattern that directs the analyst to review a specific set of
questions.  These patterns are easily identifiable on the topological network trees
and forests.  The questions identify which of the circuit's inputs must be evaluated
for a specific clue.  The analysts use the forest as a road map through the system
during the analysis.  One network tree is evaluated at a time starting with the
network tree closest to the forest output.  Likewise, each network tree is evaluated
one node and component at a time starting at the node or component closest to the
network tree's output.  Each analyst works back toward the inputs that affect the
output.  If a sneak clue reveals that an undesirable condition may exist, then the
combination of inputs required to provide the undesired condition is then
determined.  If this combination is possible, then a sneak condition exists.  The
input combination could be static, dynamic, normal or abnormal.

Sneak Analysis can also be applied to software and to integrated hardware/software
systems where hidden modes of hardware/software interaction may exist.

For hardware, the clues are subdivided into electrical and functional categories.
There are also functional clues for forests.  Some of the forest clues are identical to
network tree clues, while others are unique to forests.

Sneak Electrical Path Example



7

The most basic type of sneak condition is the sneak electrical path.  This usually
exists where multiple inputs control multiple outputs.  A simple example, which
existed in thousands of cars in the 1950's, is shown in Figure 4.
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Fig. 4.    Sneak Electrical Path

The design intent is that the brake lights be
controlled by the hazard switch and flasher
module combination, or by the brake switch
and ignition switch combination.  It is also
intended that the radio be controlled by the
ignition switch.  All of these intended paths
work as expected.  However, there is an
additional, unintended path shown by the
arrows in Figure 4.  With the ignition switch
off, the hazard switch closed and the brake
switch closed, the radio may be played in
bursts.  This sneak involves current flowing
through the brake switch in a "reverse"
direction.  The pattern in which the sneak can
be easily seen is called the "H" pattern, which
is shown in the topograph of Figure 5.  The
horizontal bar in the H pattern can allow
current to flow in either direction.  The
analyst must determine if both directions are
intended.

Sneak Timing Example
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Another type of sneak condition is sneak timing.  In the example circuit of Figure 6,
if signal "A" is in its low state, the signal transmitted from point "C" to point "D"
will be uninverted.  If signal "A" is in its high state, the signal transmitted from
point "C" to point "D" will be inverted.  However, if signal "A" transitions to a high
state just slightly ahead of signal "C," then the signal at point "D" will contain an
unintended spike or glitch.  The circuit contains a clue that a sneak timing condition
is a possibility.  That is, signal "C" splits and travels through two parallel paths that
rejoin at signal "D" and one of these paths has an odd number of inversions while
the other path has an even number of inversions.  A similar situation exists for
signal "A."  In this simple example, these paths are evident from the schematic;
however, in a real system, the paths may be very long, and may contain many gates,
other circuitry from various assemblies, and even software.  The network trees and
forests integrate large amounts of design data to allow these paths to be seen.
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Fig. 6.    Sneak Timing

After discovery of the clue and possible glitch, the analyst must ask two questions.
The first question is, "Will the glitch have an impact on the system?"  For instance,
if the glitch is fed to a light bulb, it will not be seen.  However, if the glitch is fed to
the input of several digital latches, some of the latches may respond to it while
others may not.  This could then throw the system into an illegal state.

The second question is, "Can the required input timing relationship exist?"  To
answer this question, the analyst can trace signals "A" and "C" back to their origins
using the forest.  If signals "A" and "C" are controlled by a common element where
signal "C" occurs substantially after the positive transition of signal "A," then the
sneak condition cannot occur.  If the two signals are controlled by a common point,
there may still be some variable in the timing of these signals that may allow the
sneak condition to occur.  Another possibility is that the origins of signals "A" and
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"C" do not have any common element.  In this case, the sneak condition is possible
because there is nothing to prevent the required timing relationship from occurring.
It is, then, a matter of chance.

Integrated Hardware/Software Example

An increasingly common type of sneak condition involves both hardware and
software.  In one system analyzed, the fault detection software monitored the
condition of several solenoids and their driver circuits for faults.  A generic software
loop checked each solenoid during each execution of the major software loop, or
about once every half second.  If a critical problem (severity 1) was detected, the
software would command a system shutdown as required by the system
specification.  However, as shown in Figure 7, one of the monitored solenoids is the
solenoid that initiates the shutdown.  
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Fig. 7.    Integrated Hardware/Software Sneak Condition



10

The shutdown solenoid is energized for normal operation and deenergized to
initiate a shutdown.  If any severity 1 faults are detected in any solenoid and the
driver for the shutdown solenoid has failed shorted, the system will try to respond
by commanding shutdown.  This is normally accomplished by turning off the
shutdown driver transistor.  However, this is the transistor that has failed shorted
and was one of the detected faults.  In this case, both the hardware and the software
performed according to the specification.  However, together and under a particular
circumstance, an undesired result was achieved.  This sneak condition probably
went undetected during the design phase because the tunnel-vision factor is
especially strong between hardware and software design groups and there was plenty
of spaghetti in the software.

Sneak Analysis Results

Sneak Analysis has a demonstrated record for improving system safety and
reliability while reducing overall design and development costs.  It has been
estimated that for every dollar invested in Sneak Analysis, there are $25 saved in
life cycle costs.  For example, recent analysis of 10 systems resulted in approximately
300 hardware design changes and 200 software design changes before the systems
were built.  That averages 50 changes per system.  On three systems, changes
resulting from Sneak Analysis produced estimated cost avoidances of $33 million,
$32 million, and $22 million.

The following are example potential impacts of sneak conditions found in
industrial systems:

• Conflicting inputs can be made from multiple operator panels.

• Commands that should be inhibited in a particular mode are still possible.

• Inadvertent automatic initiation of commands.

• Monitoring circuitry inhibited or destroyed by the condition to be monitored.

• Intermittent loss of communication between remote sensors and process
controller.

• Damage to components by stresses from sneak paths.

• Built-in-test passes with multiple failures in system.
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The following are example types of sneak conditions found:

• Unexpected cause and effect relationships.

• Incomplete logic.

• Conflicting hardware and software paths.

• All modes of operation not defined.

• Software misinterprets functional meaning of input from hardware.

• Mismatched hardware/software interface.

• Hardware incorrectly responds to output from software.

Design concern conditions are also found using the Sneak Analysis technique.
These are undesirable circuit or logic conditions which are not sneak conditions but
are of concern with respect to system operation, safety, reliability, testability, or
maintainability.  Design concern conditions identify potential design problems or
marginal design practices.  

Identification of design concern conditions constitute an additional value of Sneak
Analysis and have often resulted in significant project life-cycle cost savings as well
as increased reliability, maintainability, and safety.  The following are example
potential impacts of design concern conditions found in industrial systems:

• Reduced reliability due to unnecessary components or logic.

• Reduced maintainability.

• Susceptibility to noise.

• Single failure points in redundant systems.

In addition to sneak conditions and design concern conditions, numerous
document errors are usually discovered throughout the Sneak Analysis process.
Documentation problems can affect reliability, maintainability, safety, life cycle costs,
future engineering analyses, and future changes.

Integration of Sneak Analysis and Fault Tree Analysis

Fault Tree Analysis (FTA) is used to predict the most likely causes of a predefined
undesired event.  FTA provides a graphic display that shows the relationship
between failures and events.  The undesired event is shown at the top of the tree.
The tree continues down through functional logic to failures of basic components or
commanded events.  This concept is illustrated in Figure 8.  
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Fig. 8.     A Fault Tree Shows the Relationship Between Failures and Events

Output reports from the analysis include identification of single and multiple
failures that can cause the undesired event; the probability of the undesired event
happening for any designated operation period; and a ranking of contributing single
and multiple failures with their probability of being involved in the undesired
event.

Computer controlled systems can be analyzed by constructing integrated
hardware/software fault trees that cover hardware through pertinent software
routines and back through additional hardware.  Network trees and forests
generated during a Sneak Analysis may be used to convert the system circuitry and
software into the graphical fault tree.  When FTA and Sneak Analysis efforts are
integrated, the combined contribution of component failures and sneak conditions
can also be analyzed.

The fault tree is developed for the defined top undesired event including required
operational conditions.  Below the top undesired event all operational or
component failure events that lead to the top event happening are placed in
sequential order using Boolean logic to represent the required operating mode of the
circuitry.  Figure 9 defines the symbols used on fault tree plots.  If one of several
events can cause the event above them, they are under an OR gate.  For example,
under the event "Loss of high pressure pump" might be an OR gate with the events
"Mechanical failure of high pressure pump" and "Loss of electrical input to high
pressure pump."  If all events under an event must occur for the above event to
occur, they are under an AND gate.  The fault tree development continues down to
input controls and basic components.
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The forests constructed for the Sneak Analysis can be used as an outline for
constructing a fault tree.  For example, the forest constructed for an output such as a
valve solenoid or pump motor would act as the structural outline for the fault tree
which involves that valve or pump.  The paths from right to left in the forest
leading back through the various network trees are the same as those which should
appear in the fault tree from top to bottom.

The network trees provide the details necessary to determine how the output event
of that tree may be initiated by various failures.  Functions and paths are clearly laid
out on network trees and forests, thus avoiding one of the common causes of errors
in constructing fault trees.  When high-level design data are used for constructing
fault trees, some cause and effect relationships are sometimes omitted because they
do not appear in the high-level design data.  When detail-level design data are used,
confusion can result because of the spaghetti and tunnel vision factors associated
with such data.

A label appears in the rectangle that is part of each symbol.  Labels for gate events
describe the failure event that is happening below the gate.  Labels for basic events
(circles and diamonds) describe the part that has failed and mode it has failed in
(Resistor R54 fails open).  Labels for house events describe the event that is normal
for the system during the mode of operation (+28Vdc is present).  Labels for inhibit
events describe the condition (inhibit) for the events below the following AND gate.

The house event and inhibit gate are used to show the combined effects of sneak
conditions and failures.  A sneak condition may affect only part of a system in a way,
which under normal circumstances, has no system impact.  However, when the
sneak condition is combined with some combination of failures, the effect of the
sneak may be disastrous.  Also, the probability of the top event may increase
considerably when the sneak condition is "turned on" using a house event.
Therefore, a sneak condition that was considered as an acceptable risk may be
classified as critical when viewed in conjunction with fault conditions.  

Integration of Sneak Analysis and Failure Modes, Effects, and Criticality Analysis

Failure Modes, Effects, and Criticality Analysis (FMECA) is a systematic way of
evaluating the effects that a particular component failure has on a system.  The
failed component can then be assigned a criticality number so that the design team
will know which components are most critical to the safe and reliable operation of
the system.  FMECAs are also beneficial in the preparation of test procedures and
troubleshooting failed systems.  

A relational database can be used to help provide accurate, efficient processing of
data and documentation of results.  The descriptions of all failure effects along with
their resultant criticality numbers are compiled in easy-to-read worksheets for fast
and convenient review.  Additional summary reports can be tailored to fit special
requirements.
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Accompanying the reports are various diagrams that show the functional
relationships of the components of the function, redundancy relationships in the
system, and the relative severity of each failure.  If the FMECA is performed along
with a Sneak Analysis, the FMECA database can be automatically extracted from the
Sneak Analysis database, as shown in Figure 10.  This assures a complete, accurate,

and cost-effective
basis for the
analysis.

Fig. 10.
Automated Sneak

Analysis to FMECA
Data Transfer

Conclusions

Sneak Analysis of
process control
systems improves
safety and
reliability.  The
analysis should
include both the
hardware and
software.  Analysis
should be

performed to the detailed component and software instruction level.  Sneak
Analysis can reduce schedule risks and costs by detecting errors before construction
and testing.   Sneak Analysis finds problems not found during design, simulation,
test, or other analyses.  Therefore, Sneak Analysis can reduce the number of
problems found in test and startup, and reduce operational problems in the field.
Detailed topological diagrams are also useful for other analyses, evaluating design
changes, and test planning and troubleshooting.

In the petrochemical industry, Sneak Analysis has uncovered potentially costly
sneak conditions in several types of systems.  Timely alleviating measures were
implemented and potentially very costly downtime events were avoided.  Sneak
Analysis is thus a valuable operational failure avoidance and reliability
improvement tool for modern hydrocarbon processing plants.
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